a2 United States Patent

US009135282B2

(10) Patent No.: US 9,135,282 B2

Peh et al. 45) Date of Patent: *Sep. 15, 2015
(54) EQUI-JOINS BETWEEN SPLIT TABLES (56) References Cited
(71) Applicant: SAP SE, Walldorf (DE) U.S. PATENT DOCUMENTS
. 4,811,207 A 3/1989 Hikita et al.
(72) Inventors: Thomas Peh, Heidelberg (DE); Holger 6,226,639 Bl 5/2001 Lindsay et al.
Schwedes, Kraichtal (DE); Wolfgang 6,567,802 Bl 5/2003 Popaetal.
Stephan, Heidelberg (DE) 6,944,633 Bl 9/2005 Higa et al.
’ 2005/0187977 Al 8/2005 Frost
. 2006/0136388 Al 6/2006 Steinau et al.
(73) Assignee: SAP SE, Walldorf (DE) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Arie Segev, “Optimization of Join Operations in Horizontally Parti-
patent is extended or adjusted under 35 tioned Database Systems”, ACM Transactions on Database Sysems,
U.S.C. 154(b) by 0 days. vol. 11, No. 1 Mar. 1986. 33 pages.
.) . . . S. Ceri, “Optimizing Joins between Two Partitioned Relations in
This patent is subject to a terminal dis- Distributed Databases,” Journal of Parallel and Distributed Comput-
claimer. ing, vol. 3, No. 2, Jun. 1986. 22 pages.
William Perrizo, Prabhu Ram, David Wenberg, “Distributed Join
(21) Appl. No.: 14/297,223 Processing Performance Evaluation”, System Sciences, 1994, vol. I
’ Architecture, Proceedings of the 27th Hawaii Internation Confer-
o ence. IEEE Comput. Soc. Press, Jan. 1994. 10 pages.
(22) Filed: Jun. 5, 2014 International Search Report (from a corresponding foreign applica-
tion) EP12004039, mailed Oct. 25, 2012.
(65) Prior Publication Data Primary Examiner — Rehana Perveen
US 2014/0289285 A1l Sep. 25,2014 Assistant Examiner — Tiffany Thuy Bui
(74) Attorney, Agent, or Firm — Fountainhead Law Group
PC
Related U.S. Application Data 57) ABSTRACT
(63) Continuation of application No. 13/117,894, filed on A join operation between split data tables includes providing
May 27, 2011, now Pat. No. 8,793,287. reduction data from first partitions to each partition among
second partitions. The reduction data serves to identify actual
(51) Int.ClL values in one of the second partitions that also occur in one of
GO6F 17/30 (2006.01) the first partitions. Global IDs are assigned. Translation lists
(52) U.S.CL including the global IDs are sent to the first partitions. Each
CPC ... GOGF 17/30289 (2013.01); GOG6F 17/30498 first partition and each second partition create globalized lists
(2013.01); GOGF 17/30545 (2013.01) which can then be combined to generate respective first and
(58) Field of Classification Search second compiled lists. The join operation can then be con-

USPC ittt 707/809
See application file for complete search history.

ducted on the first and second compiled lists.

18 Claims, 27 Drawing Sheets

getetals andsERa - 306

~Yanstated valie 1DS

Igenstal and SR
s Bt 308

giobal

U.S. Patent Sep. 15, 2015 Sheet 1 of 27 US 9,135,282 B2

~ 102

104 -~

Fig. 1

U.S. Patent Sep. 15, 2015 Sheet 2 of 27 US 9,135,282 B2

ID | aftrbute1 | attibute2 | <+ | attributem |

1 val# val# . value

2 val# val# value > partition

n | val# val# Lo value P

actual value | valueID | actual value | valuelD |
value val# dicti value val# dict
_ dictionary, {_ dictionary,

value . val# attribute 1 value : val# attribute 2
value L oval#t , value valt

Fig. 1A

US 9,135,282 B2

Sheet 3 of 27

Sep. 15, 2015

U.S. Patent

. jTTT T T T T T oo T oo T oo e T T !
AE * 7
m €02 oz |
olc 80IA8(J i —
/\“ oBeI0NS (s)ossaoo.id ” W
" i aolne indu
{
| .
-t |
M 11074 ,
" /\P | (4%
" ¥0C 44 ! Aeldsig
!
m aoeoY| Aiowep |
M HIOMION |
{
| |
BARS |~ 66T T S I
JETNETS VA e
YIOMiaN ozz
12207 VA
0€e JoulaU|
BV VTS Va G1z
BTN TS /\ XA Janleg /\; AN
0
JETN T VA rANA

N

U.S. Patent Sep. 15, 2015 Sheet 4 of 27 US 9,135,282 B2

initialize tables i 322

Y

™ 324

in each A partition

y

_~ 304

324a | communicate
1 value IDs

y

324b/\ communicate
actual values

32{9”\ map A->B

-~ 308

324d
| mapB->A

/

map to matrix i/ 326

h 4

resolve duplicate
ViD-B

328

Fig. 3A

Fig. 3

U.S. Patent Sep. 15, 2015 Sheet 5 of 27 US 9,135,282 B2

Data Table A 402
. Doc ID | NAME atrr 3 eeed attr X
1 Adam value value
2 Hugo value value
3 Markus value value
4 Werner value value
5 Markus value value
6 Hugo value value
101 Eva value value
102 Herbert value value
103 Hugo value value
104 Werner value value
105 Zacharias value value
106 Herbert value vee value
Data Table B 404

. Doc ID | NAME atrr 3 e attr Y
1 Achim value value
2 Adam value value
3 Eva value value
4 Adam value value
5 Eva value value
6 Zacharias value value
101 Markus value value
102 Hugo value value
103 Eva value value
104 Zacharias value value
105 Markus value value
106 Adam value s value

Fig. 4

US 9,135,282 B2

Sheet 6 of 27

Sep. 15, 2015

U.S. Patent

1nsal uiop
01 501
9 501
0L ol
€0} 10}
g 10l
g 101
Zol 9
S0} g
10} g
S0l ¢
101 €
zol z
901 |
v)
4 |
g a1 20g v a1 90Q

vy B4
wepy 901
smyBN 501
seyeyoez Y01
end €0l
obnH Z01
smep 10}
seuByoeZ g
BAJ G
wepy b
BA] ¢
wepy z
Wiyoy L
JNVN | @190Q |
AR a Xepy|

YequeH 901
seueyoez S0l
JOUIBM $01
obniy €0l
yUogJoH 20l
eA] 101
obnp 9
snyepy G
JSUIBMA %
snyJen €
obnyy z
wepy L
JAVYN i qiooQ |
YV Xapu|

U.S. Patent Sep. 15, 2015 Sheet 7 of 27 US 9,135,282 B2

502a
‘value ID | {DoclD | NAME atrr 3 ees attr X AT
1 1 Adam value value
2 2 Hugo value value ‘
3 3 Markus value value > A
4 4 Werner value value
3 5 Markus value value
2 6 Hugo value ‘e value | ;
502b oA
fvalue D] {DociD | NAME atrr 3 ees attr X 1
1 101 Eva value value
2 102 Herbert value value \
3 103 Hugo value value 7 A
4 104 Werner value value
5 105 Zacharias value value
2 106 Herbert value e value R
504a
‘value D' [DociD NAME atrr 3 e attr Y A N
1 1 Achim value value
2 2 Adam value value g
3 3 Eva value value ~ B4
2 4 Adam value value
3 5 Eva value value
4 6 Zacharias value cee value © ¥
504b B
‘valueID | | DocID | NAME atrr 3 fee attr Y P
4 101 Markus value value
3 102 Hugo value value i
2 103 Eva value value >~ B
5 104 Zacharias value value
4 105 Markus value value
1 106 Adam value e value P

Fig. 5

U.S. Patent Sep. 15, 2015 Sheet 8 of 27 US 9,135,282 B2

512a | NAME |value D | NAME |value D | 514a
Adam 1 Achim 1
Hugo 2 Adam 2
Markus 3 Eva 3
Werner 4 Zacharias 4
Dictionary A Dictionary B

512a | NAME |value ID | NAME [valueD| 514b
Eva 1 Adam 1
Herbert 2 Eva 2
Hugo 3 Hugo 3
Werner 4 Markus 4
Zacharias 5 Zacharias 5
Dictionary A, Dictionary B,

Fig. 5A

US 9,135,282 B2

Sheet 9 of 27

Sep. 15, 2015

U.S. Patent

[4 901
g G0l
14 0L
€ €01
4 20t
b

gl enjea | @ioeq |

2y 181 ojdmy

g ''g suoped

~ NI i N
— NI I IO

@i enjea | @ioog |

Yy 181 91dmy

2g ‘'g suomped

WL~ p09

qeol -

N st

ecol ..~

ai snjea

ly Ejep uoionpal

z HogIoH Q0L
G _ seueyoey g seueyoez GO}
4 } JOUIBAA 1% JoUJBAA Y0l
€ obnH) obny colL
z / yegleH z HoqioH zZol
A A BAg l eng 101
ai enjen | JNVN L gl enfea | JNYN | glooq |
— Oy Aseuonol 4 o\ Xapu
7 ¥ noiQ v Xepu|
209
,N ofinH 9
e SMIBIN [
1% JOUIBAA v JBUIBAA 1 4
[S e 'S SHIEN ¢
z obny Zz obny Z
’ b wepy L wepy L
ai enjen | JNYN . gl enfex | JAVYN | Q1ooq |
B71¢ ‘Y Aleuonoiq a hy Xapu|
209 -

US 9,135,282 B2

Sheet 10 of 27

Sep. 15, 2015

U.S. Patent

+g uoped
. Bl

4%

h

Lo kg Adeuonoiq

L

SeuBLoRZ ¥ 3
BAT e

wepy 4
wyoy b
INVYN | gl anjeA |

—\I
—xl
—\I
—xl
—\I
ag
9|qel-X gzv
\:4
apoL
vz ¢
P T z-
T z-
Tz z-
4 AW | A
9|qerx yzd
A
- el
L A
- 1
\ ’
ovor— aa |

S[gel-X acv

[(e]
N
™~

HoN M o W~ O

ai |eqoib

oy ejep uoionpat |

147 (A7)

Y
~ N
‘h'
;\\

by elep uogonpal

US 9,135,282 B2

Sheet 11 of 27

Sep. 15, 2015

U.S. Patent

qz0b -
™ R} s =
}- 5 R G
lq uoned AR v
L . " “
‘B - e i e
V. D4 - 2 4
-)
. ag |
s|qerx azy |
Bris .
L tg Areuonoig aroL 912 147 rAYA
. N < |
\,_ / \, \,,
seueyoez 5 m - m
o3 s 8 AN
Py ‘ L) ¢ <
unyoy v Z- z- 9 9 - iz
SN Qiennl Y pre) L& & 5 G V- Y
: / T - AN . ’ . e
Covze) e < S -l
AL QiY | aly z 4 SRS N A s
Q0L ol9e1X vz ' } b b
| aesos | gan | van |
z0L —
4 /
{1owiopp ‘smyiepy ‘obnH ‘wepy} € e
4
b A
S @l onjea | o
ezoL ~—~ | BreE)

by ejep uogonpas —

B|0€-X dev

US 9,135,282 B2

Sheet 12 of 27

Sep. 15, 2015

U.S. Patent

> b
g uonied -
L] FI
a. b -
> ¢
ag
Covze | sigeyx g2V
Brig oy «
., ‘g heuonal WL o)
selieyorz . 5
BAJ . s
wepy , /
wiyoy vio gk g , 5
€ \\.)ﬂ /\R N:
NN s g
4 4 L) v
T _ zZ- Z- . c
I« I« 1 ¢ [
90L a19e}-X vzg ; }
| aireqos
\.\A \,\
204 L
, i 14
{seueyor7 ‘Jaulop ‘0bny ‘LoqioH ‘BAg} b- v) € L~ ‘
e 7 4
E'v'eT e < farenen
fa.\\\.;A e T
ev0.L % cot ly BIBp uoponpa
alqelx gzy

US 9,135,282 B2

Sheet 13 of 27

Sep. 15, 2015

U.S. Patent

+g uoniued
0/ b

eyls
|
‘g Aseuonoig
seueyoez 4
A [
wepy 4
wiyoy |
INVYN LEEN

eyl

Sjgerx 4y
~

apoL —

ai®vy ar'y

|jael-X vzd

Qlqel-X dev

i4 S
L= v
L €
L- 4
[1

S)
e - v
ol €
J b ;
oy ejep uoionpad
1192 vii [AY]
\
¢ ‘ C.
5 6 - N
g 8 L v
L L 1- e
9 9 L- Lz
5 g - W
v v LA
3 € b- ,_,, € ,,
¢ Z L- Lz
v } b iy
N
| aieqop gan | van |
\A
20L .
7 ¥
~ € 7
=
S Y
S gt onjea
eeor,

by elep uononpal

US 9,135,282 B2

qzot -
AN o * \ G
‘g uoiiued N
. Lb- ek € ~
a.s bi4 -~ Tz
e S

arg |

sigerx dgv

Sheet 14 of 27

Sep. 15, 2015

U.S. Patent

erLg .
ﬂ, ‘.1\\\.\
,, L
' Aeuonoiqg a0 1474 2L
seLeLoe7 b M N - m/ _
eAd € . 8 b- v
wepy 4 M .) . . oo
wiyoy L N [s z- s L —~
i : - V\m £ 3 c- e ,,, 2
JWYN | Qienfen] o 2 I 4
2 ¥ L- Y 7
i1 c- - c - ; _,-,_,(, ,_\, e ,._,_,
A LAV | alv ? L I B A
80L e1qe1X vZ8 i el v
alegep | Fain | vaia
P
20L — \
e
ezoL —~ L
ey0L cob Wy BJep uoKINpaY

dqe}X gev

US 9,135,282 B2

Sheet 15 of 27

Sep. 15, 2015

U.S. Patent

¢q uopfed
g8 614

avls

\

"

| Zg Aleuoiol(]

selueyoez

SMYEN

oBny

Al

wepy

= (N O[O

JNVYN

. @l enjen |

qcol — §
- /A s ™
b- s] G m
- e € ~
L- iz | Z , //
- i ! ,,
. aig _aienen |
8igel-x dzv oy B1Bp UonoNpal
\..\‘\\\‘
ar0. 9LL YAV
6 6 - S
z- z- 8 8 - \ 174 /, P
- - L)i - g v
- . o 9 b Lz
- - s S b- s
= = v v R I
€) V- l g
alv | allv ? [4 b LT
slqel-X ¥z g ' b - b
| aieqos | gain | vain
o~
0L ——
, =
1- v] € L
LR \y Z ;
LI Ay § | |
rl T T
“ 4 - C @l enjea
o ezoL B
eyl @ cot by Blep uonoNpal
sjger-x gzv

US 9,135,282 B2

Sheet 16 of 27

Sep° 15, 2015

U.S. Patent

g uoniued

vg B4

aris

N\
4

zg Aseuonol(

seleyoez
SmpEY

obny

eAg
wepy

INVN

{1oWwap ‘s ‘0BnH ‘wepy}

AN

qcot
- s o (g
1- v o T ¥
e /,,,.\,” c .
L z
L L b
_qienen |
o|qei-X gev oy elep uolonpal
n‘ﬁ\\
avoz oL, biL
{ /
6 6 L-
8 8 {- s
L L -
9 9 }-
S] L-
L4 14 b-
| ¢ € -
<l aw [av I -
9|qel-X v¥zg ! b - b
| aieqob gaA | v-ana |
\\l
c0L —
T ~ -v 7 \.\\
bz) e P
ﬁ\ P
o« T
a1 enea ;
7 ezolL

BY0L

s|1ge-x gev

(epze)

iy eep uoponpas =~

US 9,135,282 B2

Sheet 17 of 27

Sep. 15, 2015

U.S. Patent

920b
5> G > s) D
¢g uoiiyed - e
. > £ €, Loheee)
a8 "B v LN E ey
X2 1 N
,,.Qw_‘m L oy B1Bp UonONpPa) ,,,/,
. tgheuopoig S
. 9LL viL 2iL
seueyoez m_ \ \,_,,
SMIBN . m _H, \m \\
o%>=_._ 8 8 b v 7
Emm_ t L b Rl
PY 9 9 1- _,,, c \\
JANVN Qi enjeA s G L- g
v v - xS
€ ¢ 1- > ,,,,_,
AL av | ally t 4 b AN
90L s|qeI-X Yeg E b - r\\ N
| aesas | ean | wvan |
-~ /
c0L - /
. 14 7
{seureyoez ‘Iouiop ‘obny ‘ueqieH ‘eal} - v € -
v oo|e L 4 |
. . € e 4 e , L]
. EvETT - e
. e - e
By0. ard cot ly Blep uoionpai
sjqeyx gzv

US 9,135,282 B2

Sheet 18 of 27

Sep. 15, 2015

U.S. Patent

Qcol —-
g Js
Zg uoniued - e
. m” € YY
08 'Bid L
Z T
avis a|qe-X gzy
|
L g Areuopolg
seueyoez g
s ¥ 6 6
obny € g Q
erg z 3 < ‘ L
wepy L J I, z g . 5
" > 4
INYN ai enjen | - ; s
! Z Y
14
z L . c
LA aiv z z
90L olqe1X vz g k b
| atiegop
\X
2oL)
- v
v e
c z Wi// . R
T
\A - . -
e 124
ev0. E cot by Blep uoponpai
s|qe-x gzv

US 9,135,282 B2

Sheet 19 of 27

Sep. 15, 2015

U.S. Patent

¢g uoniped
as b4

aris

f
|

¢g Aeuonoi

seleyoez

smyje

obny

end

— N T (D

wepy

JANVYN L @l enfea

~.

-

¢ z-
. X z- £
L ¢ Z
ic b [
T z L
A aw | ay
90L ojderx vzg
L1
Lo
€
epo, L aig |
slqelx gzv

ezo,

Wy elep uononpai

US 9,135,282 B2

Sheet 20 of 27

Sep. 15, 2015

U.S. Patent

¢g uoniped

38 614
avis
L g Aeuonoiqg
P
seleyoez G
smIBN V7
obny ¢
end Z
wepy b
JNVYN | @l enjea

90L

9z0L — .
S R
ﬁ\l p - - b //,// .v
e]+ < e
L- 4
4 l
Qi enjea |
a|qel-X qzv oy Biep uoionpad
v\\«\
aro. 9Lz viL ZhL
P
6 6 g G
e = 5 - P v
£ Z X (e €
My — 3 o - E z
. G g
= < s[_s 2 !
» - v - L- ¥
P 4 | c g ™ 3
AL AW | ailv ? 4 ol 4
slqEIX vZg k : 13 !
| ateqes | gain | v-ain
~
0L — .
- v «
[T
€ Jeim .
. «
P .
e
ev0.L ard cot by ejep uogonpal
alqelx gzy

U.S. Patent

Sep. 15, 2015

Sheet 21 of 27

US 9,135,282 B2

702 702

translation matrix of partition B4 translation matrix of partition B,
VID-A VIDB | global ID VIDA | VIDB | globalID

1 2 1 Adam 1 1 1

2 -1 -1 Hugo 2 3 2

3 -1 -1 Markus 3 4 3

4 -1 -1 4 -1 -1

1 3 5 Eva 1 2 5

2 -1 -1 2 -1 -1

3 -1 -1 Hugo 3 3 2

4 -1 -1 4 -1 -1

5 4 9 Zacharias 5 5 9

(a) { (::f> (\
712 714 716 712 714 716

B, _partition B, partition

Fig. 9

U.S. Patent

Sep. 15, 2015

Sheet 22 of 27

translation matrix partition B4

-
/
e
4
;
/
//
s /
/ /
/ /
; /
! i
/ /
/
/ /
/ i
)) e
i valueiD | globaliD

VIDA | VID-B |

global ID

~.

2

-
/1

i T
(-1

|

-1

1 1 i
v =1
i !

//‘(

1 1

-1

-1

BWIN

-1

P - -
S
/'/l
,/"'
7 //'
/ /
/
/ /
! /
/ /
/ /r‘
/! /
/
{ /
i valuelD | global ID

AIWINI

= 702

US 9,135,282 B2

partition B,

T
2
3 ‘
4 -1 - 1/
(2 SN
B N
L4 -1 1 \\
5/ 4 9
/ / =
712 714 716 \ ‘
" 104a value ID ;| globalID - 104b
1 5 -/
. partition Aq 2 -1 ’ partition Ay
% Server 3 -1 PR RSS Ser\/el"
4 -1
. 5 9
Fig. 10A
transiation matrix partition B, e 702

VIDA | VID-B |

globat ID

1‘/ \l 3 ,_;_A_,;" 2
- Rj\ // 4 3
Z 4/ - Y

|

N

! /5 k\'\

COIENTAH NTEN @ NI NN

partition B,

[2 (e
‘\ /J -1 \Jt\ e ”) N
\\ /,/ 5 \\97’ \\\
P JEEN k
¢ { Oy 4
712 714 716 | |
N Iz
i vaiue ID globat ID

/™ 104a

N partition A,
7 server

Fig. 10B

5

-1

2

-1

i WIN

9

 ~104b

U.S. Patent Sep. 15, 2015 Sheet 23 of 27 US 9,135,282 B2
partition B4 1102
“ translation matrix partition B4 e 702
‘DociD| NAME [valueiD| | VIDA | VIDB | gobaliD |
i Achim 1 127
2 « -Adam -2 e 7 -1
3 Evafn 3o -1 -1
4 - -Adam -2 = - -1
5 o Eva 3¢ 13) e 5
6 < | - Zacharias | 4 -1 -1
,, A -1
;‘\ \T\;’I\ —1
y T ¢ (¢
" globa list B, * AN 712 714 716
"DocID | giobal ID S
2 1 .- 106a
3 5 recipient
4 1 server
5 5 .
6) Flg 11A
partition B, 1102
= translation matrix partition B o 702
' DoclD NAME |value ID | viDA | VDB | gobaliD |
101 Markus 4 1 1 1
102 Hugo 3 2 3 2
103 Eva 2 3 4 3
104 Zacharias 5 4 -1 -1
105 Markus 4 1 2 5
106 Adam 1 2 -1 -1
j 3 3 2
4 -1 -1
AN 5 5 9
N T 7) J
* globallist B 712 714 716 |
_ DocID | global ID e
101 3+ 106b o 7
102 2 recipient
103 5 ::::::::::::::?V.“., server
104 9 .
105 3 Flg 11B
106 1

U.S. Patent

partition A4

Sep. 15, 2015

Sheet 24 of 27 US 9,135,282 B2

{ value ID global ID

. . - —AL) © ..~ ~104a
i DocID | value ID | o 5 3
1 a 3 -1
2 ’/"/2\\\ 4 _1
3 13 from By /
4 4 S /
5 3 N\ - / lue 1D lobal 1D
6 2 »\\\ R i value globa :
TN 1 1.7 104a
e N /2% -y 2
e S) S
“ global fist Ay 4 -1
DocID | global D | T from B,
1 1 ~..108a .
g g . recipient
/ server
5 3 Fig. 12A
6 2
partition A, 604 value\ID | goballD | ~104b
‘ ;X‘I} 5 -
' Doc ID | value ID | L g 1
101 (e 4 4
102 2 5/\ 159
103 (3 N I fromB,
104 4 S
105) RN
/1 06 2 B \\ i - { value!D | globaliD | ~ 104b
/ = e \ 1 5 _
o . 2 1
| /-) <
i LT Tt {3 by 2
| / T 4 4
“global list Ay . g 5
. DociD | globallD | T from B,

101

5

103

2

105

9

recipient
server

US 9,135,282 B2

Sheet 25 of 27

Sep. 15, 2015

U.S. Patent

¢l B4
4
l 901
e GoL
6 0L
G €01
4 cot
) 101
6 9
g g
l 14
G €
l e

alteqo | @io0Qg

1s| g pa|idwod

}nsais uiop
0l 501
9 501
0l €01
€01 101
g 101
g 101
zol 9
S0l g
L0l g
S0l £
L0l £
zZol 4
901 |
v |
4 l
8 Q1 20 v Q1 90Q

AT
//,

6 50}
z £0}
g 10}
¢ 9
€ S
g £
Z z
))

aitegolb | @gioog

181l v p8lidwo?

US 9,135,282 B2

Sheet 26 of 27

Sep. 15, 2015

U.S. Patent

oflL B
l 110z/22/2 ¢ JOO} i€ Gl sdwe| 14
S 8002Z/£2/9 z 100} p,€ G/ sdwe| 4
z 600Z/L1% L 100} ;5| 00€ SUIys z
Aueny eleq sjes a Vol celon | Amuenp wey| al
gyl b4
L L1L02/L2i2 sdue| €
G 8002/£2/9 sduie| Z
Z 8002/L /P SHIYS L
Aypuenp sjeq sleg way al
a|qe] JopiO-lieN
e
orovi arovi BYOpL 90%1
¢ / ¢ ¢
JOOY p,€ G/ sdwe| 4
< 100} puZ 0S 5191580} ¢
corl / 100} 351 00€ SUIYsS z
JooY s} 002 sjued b
uonEoOT Auenp wey| al

a|ge | Alojuaau|

U.S. Patent Sep. 15, 2015 Sheet 27 of 27 US 9,135,282 B2

Inventory Table

| ID | ltem | Quantty | Location |
1 2 200 1st floor
2 3 300 15t floor
3 4 50 2nd floor
4 1 75 37 floor

Mail-Order Table

| ID | ltem | SaleDate | Quantity |

4/1/2009 2
6/23/2008 5
3 1 2/27/2011 1

—
w

N
—

dictionary

actual value V?:;e

lamps

pants

shirts
toasters

BIWIN| -~

Fig. 15

US 9,135,282 B2

1
EQUI-JOINS BETWEEN SPLIT TABLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application and pursuant
to 35 U.S.C. §120 is entitled to and claims the benefit of
earlier filed application U.S. application Ser. No. 13/117,894
filed May 27, 2011, now U.S. Pat. No. 8,793,287, the content
of'which is incorporated herein by reference in its entirety for

all purposes.
BACKGROUND

The present invention relates to database operations, and in
particular to equi-join operations among split tables.

Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

A common database operation in a relational database is
the join operation. Generally, a join of two data sources cre-
ates an association of objects in one data source with objects
that share a common attribute in another data source. A typi-
cal data structure for data sources is a data table (or simply,
table) comprising rows and columns Each row (or record) of
the data table represents an object. Each column represents
attributes of the object. For example, a data table may be
defined for inventory in a retail store. The inventory items
(e.g., pants, shirts, toasters, lamps, etc.) may constitute the
objects represented by the data table. The attributes of each
item may include such information as the name of the item,
the number of items at that store, the location of the item in the
store, and so on. Instances of an attribute are referred to as
“attribute values”, “actual values”, or simply “values.”” An
example of such a data table is shown in FIG. 14A, where
each row 1402 represents a store item. Each row 1402 com-
prises attributes of the item columns 1404a-1404¢. Each row
1402 may include an ID attribute 106 that identifies the row.
For example, the ordinal position of a row 1402 in the data
table may be used as the ID attribute.

FIG. 14B shows an example of another data table called
Mail-Order. A join operation between the Inventory and Mail
Order data tables can be performed. For example, consider a
so-called “equi join” type of join operation where the join
condition (join predicate) specifies a relationship (e.g., equal-
ity) between attributes that are common to both data tables.
Suppose the join condition is: items in the Inventory data table
that are the same as the items in the Mail-Order data table. For
example, the join expression might be formulated as “Table
Inventory inner join Table MailOrder on
Inventory.Iltem=Mail -Order.Item”.

An execution plan (query plan) for performing the join
operation may include the following steps:

1. read out a row from the Inventory table

2. compare the actual value of the Item attribute in the row

that was read out from the Inventory table with the actual
value of the Item attribute in a row of the Mail-Order
table

3. if there is a match, then output the row that was read out

from the Inventory table and the matching row in the
Mail-Order table

4. repeat steps 2 and 3 for each row in the Mail-Order table

5. repeat steps 1-4 for each row in the Inventory table
A result of the join operation can be represented by the data
table shown in FIG. 14C.

15

25

30

40

45

55

60

2

A database may comprise data tables that contain thou-
sands of records each. In addition, records may have tens to
hundreds of attributes each, and the actual values of some
attributes may be lengthy (e.g., an attribute that represents the
name of a person may require an allocation of 10-20 charac-
ters of storage space). Such databases can impose heavy
requirements in the storage of their data. Accordingly, a prac-
tice of using dictionaries has arisen, where the actual values
(e.g., 10-20 characters in length) of instances of an attribute in
the data table are replaced by (or otherwise mapped to) an
associated “value ID” (e.g., two or three bytes in length).

Consider the Inventory table and the Mail-Order table, for
example. The actual values for instances of the Item attribute
in the Inventory table include “pants”, “shirts”, “toasters”,
and “lamps”. A dictionary can be defined for the Item
attribute. For example, the dictionary may store the actual
values of the Item attribute in alphabetical order and the value
IDs that are associated with the actual values might be the
ordinal position of the actual values in the dictionary.

An actual value in the data table is represented only once in
the dictionary. For example, the actual value “lamps” occurs
in twice in the Mail-Order table, but there is only one entry in
the dictionary; thus, the dictionary might look like:

lamps

pants

shirts

toasters
The value ID associated with the actual value “lamps” could
be 1, being located in the first position in the dictionary. The
value ID associated with the actual value “pants” could be 2,
being the second position in the dictionary, and so on.

FIG. 15 shows the Inventory and Mail-Order tables of
FIGS. 14A and 14B, modified by the use of a dictionary, more
specifically a central dictionary. In particular, the actual val-
ues for instances of the Item attribute in the data tables (i.e.,
text) have been replaced by their corresponding associated
value IDs (i.e., an integer). It can be appreciated that the use
of dictionaries can reduce the storage burden of large data-
bases.

The distribution of databases across separate database
servers is commonly employed, for example, to distribute the
storage burden across multiple sites. In a distributed database
configuration, one or more constituent data tables of the data-
base are partitioned (split) into some number of “partitions,”
and the partitions are distributed across many database serv-
ers. While the processing of certain queries in a distributed
database configuration may be accomplished using only the
data within a given partition of a data table, queries that
involve a join operation require access to data from all of the
partitions of the data tables being joined.

The execution plan of a join operation involving split (par-
titioned) data tables conventionally involves communicating
the actual values of the attribute(s) specified in the join con-
dition among the partitions in order to evaluate the join con-
dition. One can appreciate that the execution plan may there-
fore entail a significant amount of data communication
among the constituent partitions. As explained above, a dic-
tionary can be used to reduce the space requirements for
storing attribute values. Accordingly, each partition may be
provided with its own local dictionary (rather than the central
dictionary indicated in FIG. 15), the idea being that the asso-
ciated value IDs can then be communicated among the parti-
tions instead of the actual values. However, the value IDs in a
given local dictionary are generated independently of the
values IDs in the other local dictionaries. In other words,
value IDs locally generated in one partition of a data table
may have no correlation to value IDs locally generated in

US 9,135,282 B2

3

another partition of that data table. Suppose, for example, the
Item attribute is specified in a join condition. Suppose further
that the actual value “pants” has a value ID of 2 in the local
dictionary of one partition, a value ID of 7 in the local dictio-
nary of another partition, and a value ID of 15 in yet another
partition. The execution plan for the join operation may com-
municate the multiple different value IDs for “pants” (i.e., 2,
7, 15) among the partitions. However, the value IDs would be
meaningless in any one partition for the join operation
because value IDs only have meaning for the partition in
which they were generated. For example, while the value ID
2 may be associated with “pants” in one partition, the value
IDs 7 and 15 do not, and in fact very likely may be associated
with completely different items; the value IDs could not be
used to perform a join operation.

These and other issues are addressed by embodiments of
the present invention, individually and collectively.

SUMMARY

In embodiments, a join operation between a first split data
table and a second split data table includes receiving reduc-
tion data from each of first partitions of the first data table. In
a second partition, actual values of a join attribute that occurs
in the second partition which also occur in one of the first
partitions is assigned a global ID. A globalized list for the
second partition includes a Doc ID that identifies a data record
in the second partition for which the actual value of the join
attribute also occurs in one of the first partitions. The corre-
sponding global ID is associated with that actual value. Each
first partition receives a table of global IDs that are associated
with actual values in the first partition. Each first partition
creates a globalized list that includes a Doc 1D identifying
data records in the first partition for which the actual value of
the join attribute is identified by a global ID in the received
table. The join operation can then be performed using the
globalized lists of the first partitions and the globalized lists of
the second partitions.

In an embodiment, a computer system can have stored
therein executable program code configured to cause the
computer system to perform the foregoing steps.

In embodiments, the same global ID may be associated
with an actual value that occurs in the second partition and in
at least one or more of the first partitions.

In embodiments, multiple occurrences of an actual value in
the second partition are associated with the same global ID.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 represents a high level flow of data among database
table partitions to conduct a join operation in accordance with
principles of the present invention.

FIG. 1A show a general example of some details in a
partition.

FIG. 2 illustrates a system diagram that can incorporate
embodiments of the present invention.

FIGS. 3 and 3A are process flows for processing among
partitions in accordance with principles of the present inven-
tion.

FIG. 4 illustrates an example of data tables to facilitate an
explanation of aspects of embodiments of the present inven-
tion.

FIG. 4A illustrates a join operation in a non-distributed
configuration of the data tables of FIG. 4.

15

20

40

45

50

55

65

4

FIGS. 5 and 5A illustrate the data tables of FIG. 4 in a split
and distributed configuration.

FIG. 6 illustrates some processing in each A partition.

FIGS. 7 and 7A-7D illustrate data manipulations for a join
operation in accordance with principles of the present inven-
tion, in one of the B partitions.

FIGS. 8 and 8A-8E illustrate data manipulations for a join
operation in accordance with principles of the present inven-
tion, in another of the B partitions.

FIG. 9 compares the results of translation matrices from
each B partition.

FIGS. 10A and 10B illustrate generating value ID lists in
accordance with embodiments of the present invention.

FIGS. 11A-12B illustrate generating globalized lists.

FIG. 13 shows a final step in the join operation of split data
tables.

FIGS. 14A-14C and 15 illustrate some basic principles and
examples of data tables.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous examples and specific details are set forth in order
to provide a thorough understanding of the present invention.
It will be evident, however, to one skilled in the art that the
present invention as defined by the claims may include some
or all of the features in these examples alone or in combina-
tion with other features described below, and may further
include modifications and equivalents of the features and
concepts described herein.

Aspects of the present invention relate to performing a join
operation between two distributed data tables. In particular,
an equi-join operation may be performed between data tables
that are split into multiple distributed partitions. FIG. 1 is a
high level view of an illustrative embodiment of the present
invention. Partitions A,-A, constitute N partitions of a data
table A and can be distributed among some number (<=N) of
data severs. For example, suppose data table A having 1000
rows (records) of data is split into four distributed partitions;
partition A; might store a portion of the data table such as
rows 1-200, partition A, might store rows 201-477 of the data
table, partition A; might store rows 478-756, and partition A,
might store rows 757-1000. Partitions B,-B,, similarly con-
stitute M partitions of a split data table B that can be distrib-
uted among some number (<=M) of data servers. In accor-
dance with embodiments, there are no restrictions relating to
the distribution of partitions A,-A, and B,-B,, among data
servers (e.g., a data server may host partitions from data table
A and from data table B), or to the number of data servers that
are configured for hosting the partitions.

Referring to FIG. 2 for a moment, a typical computer
system configuration in accordance with embodiments of the
present invention is shown. In embodiments, a plurality of
servers 210, 215, and 231-235 may host or otherwise store
and maintain distributed partitions for one or more split data
tables. For example, partition A; might be stored in server
210, partition A, might be stored in server 231, partition B,
might be stored in server 234, and so on. For convenience, it
is noted that the term “partition” can be used in several related
contexts. The term “partition” may refer to the data that
constitute a given portion of a data table, or to components of
the storage system containing such data. The term “partition”
may also refer generally to the server that is hosting the given
portion of the data table, or to software employed to manipu-
late, maintain, and otherwise manage the data that constitute

US 9,135,282 B2

5

the given portion of the data table. It will be appreciated that
the specific meaning of the term “partition” can be inferred
from its usage and context.

Communication networks can connect the servers 210,
215, and 231-235. For example, a local network 220 may
connect servers 210, 215. A publicly accessed network (e.g.,
the Internet) 230 may connect server 231-235. The local
network 220 may be connected to the publicly accessed net-
work 230, allowing communication among the database serv-
ers 210, 215, and 231-235.

Each server (e.g., 210) may include a data processor sub-
system 201 that may comprise one or more data processing
units. A memory subsystem 202 may comprise random
access memory (usually volatile memory such as DRAM)
and non-volatile memory such as FLASH memory, ROM,
and so on. The memory subsystem 202 may store computer
executable programs, which when executed can cause the
data processing subsystem 201 to operate as a database sys-
tem in accordance with aspects of the present invention dis-
closed herein. A storage subsystem 203 may comprise one or
more mass storage devices such as hard disk drives and the
like. The storage subsystem 203 may include remote storage
systems; e.g., for data mirroring, remote backup and such. A
network interface subsystem 204 can provide access to the
local network 220 and provide users with access to the server
210. A system of buses 205 can interconnect the foregoing
subsystems, providing control lines, data lines, and/or voltage
supply lines to/from the various subsystems. The server 210
may include a suitable display(s) 212 and input devices 211
such as a keyboard and a mouse input device.

FIGS. 1 and 3 represent a high level flow of an execution
plan for performing a join operation of two data tables A and
B that are split and distributed, in accordance with aspects of
the present invention. The join operation is predicated on a
join condition that specifies an attribute(s) common to the two
data tables A and B, which will be referred to as the “specified
attribute”. For example, consider an Inventory data table and
a Sales data table; an attribute in the Inventory data table
might be Stocked_Items and an attribute in the Sales data
table might be Purchased_Items. A join operation between
these two data tables might specify a join condition such as
“Inventory.Stocked_Items=Sales.Purchased_Items”. The
Stocked_Items attribute would be the “specified attribute” in
the Inventory data table, and the Purchased_Items attribute
would be the “specified attribute” in the Sales data table.

In embodiments, the two data tables A and B may be split
into respective partitions A -A, and B,-B,,. Referring for a
moment to FIG. 1A, a generalized example of a data table
partition is shown. The partition comprises n rows taken from
a larger data table. Each row stored in the partition comprises
m attributes. The partition may include one or more dictio-
naries, each corresponding to an attribute. For example, FIG.
1A shows that a dictionary is defined for attribute 1 and
another dictionary is defined for attribute 2. The value IDs for
attribute 1 and attribute 2, respectively, are stored in the
partition rather than their associated actual values. As men-
tioned above, the dictionary(ies) in a given partition may be
local to that partition. In other words, the value IDs stored in
the dictionary(ies) of one partition may not correlate with the
value IDs of dictionary(ies) of another partition, even though
they may contain identical actual values.

Turning to the execution plan illustrated in FIG. 3, a brief
overview of processing a join operation involving split (par-
titioned) data tables will be given. Reference will be made to
partitioned data tables A and B illustrated in FIG. 1.

In a step 302, each partition A among the partitions A |-A ,
generates reduction data 102 and sends a copy of the gener-

10

15

20

25

30

35

40

45

50

55

60

65

6

ated reduction data to each partition B,-B,,. Accordingly,
each partition B,-B,, receives reduction data 102 from each
partition A -A . In embodiments, the reduction data 102 for
partition A comprises value IDs associated with actual val-
ues of instances of the specified attribute that occur in the
partition. The step 302 can be performed by each partition A,
independently of the other partitions A, -A, ; there is no need
to synchronize or otherwise coordinate their activity. In other
words, individual reduction data 102 from each partition
A,-A,, can be communicated to the partitions B,-B,, in par-
allel fashion.

In a step 304, each partition B, among the partitions B,-B,,
associates a global ID for each actual value of the specified
attribute in the partition that also occurs in at least one of the
partitions A;-A,,. In embodiments, the reduction data 102
received from the partitions A | -A can be used to perform this
step. Multiple occurrences of a given actual value in the
partition B, will be associated with the same global ID. In
accordance with the present invention, occurrences of a given
actual value among all the partitions of data table A and data
table B can be associated with the same global ID. This aspect
of the present invention will be discussed in more detail in
connection with a specific example discussed below.

In a step 306, each partition B, among the partitions B,-B,,
translates the value IDs that comprise the reduction data 102
from each partition A -A, , producing a set of translated value
1Ds 104 for each partition A, -A,,. Consider a partition A , for
example. Translated value IDs 104 for partition A _ are gen-
erated from the value IDs that comprise the reduction data
102 received from that partition. In particular, each value ID
in the reduction data 102 is first associated with an actual
value stored in the partition A. Next, if that actual value also
occurs in the partition B_, then the value ID is “translated” by
pairing it with the global ID that is associated with that actual
value. This translation is attempted for each value ID in the
reduction data 102 of partition A. Accordingly, the translated
value IDs 104 will comprise one or more values [Ds that are
paired with respective global IDs. Some value IDs in the
reduction data 102 may be associated with actual values
which do not occur in the partition B and so no translation is
made. The translated value IDs 104 are then sent to the par-
tition A | (backward communication). This step is performed
for each of the partitions A,-A,, and by each partition B,-B,,.
This aspect of the present invention will be discussed in more
detail below.

In a step 308, each partition B, among the partitions B,-B,,
generates a globalized list 106 that identifies one or more
rows stored in the partition. Each row that is identified in the
globalized list 106 contains an actual value of the specified
attribute which also occurs in one of the partitions A,-A,,
(based on the reduction data 102 as explained above). In an
embodiment, the globalized list 106 may include a 2-tuple (a
data pair) comprising a Doc ID and a global ID. The Doc IDs
in the 2-tuples of the globalized list 106 identify specific rows
in the partition B, for which the actual values of the specified
attribute also occur in one of the partitions A -A . The global
IDs in the 2-tuples are associated with those actual values. As
a side note, the term “Doc ID” will be used herein to refer to
an identifier that identifies a particular row in a data table.
This aspect of the present invention will be made more clear
in the specific example discussed below.

In embodiments, the globalized list 106 can be sent to a
receiving (recipient) data server. For example, any data server
210, 215, 231-235 can be designated as the recipient data
server. The recipient data server can be selected from among
apopulation of candidate data servers in round-robin fashion,
or selected randomly. In an embodiment, a particular data

US 9,135,282 B2

7

server can be designated as always being the recipient data
server rather than employing a round robin selection process.

In a step 310, each partition A among the partitions A |-A ,
generates a globalized list 108 based on the translated value
IDs 104 received from each of the partitions B,-B,,. The
globalized list 108 identifies one or more rows stored in the
partiton A. In an embodiment, the globalized list 108
includes a 2-tuple (a data pair) for each identified row. Each
2-tuple in turn comprises a Doc ID and a global ID. The Doc
1Ds identify one or more rows of the partition A. The global
IDs are obtained from the translated value IDs 104 received
from partitions B,-B,,. In embodiments, the globalized list
108 identifies rows in partition A, for which actual values
(represented by the global IDs) of the specified attribute also
occur in one of the partitions B, -B,,,. This aspect of the present
invention will be discussed in more detail below. The global-
ized list 108 can be sent to a recipient data server. In an
embodiment, the recipient data server can be the same data
server employed to receive globalized lists 106 from parti-
tions B,-B,,. In an embodiment, a different data server can be
employed.

Inastep 312, when the recipient data server has received all
of'the globalized lists 106 from partitions B, -B,,,, a compiled
B list 112 can be created. The compiled B list 112 comprises
pairs of Doc IDs and global IDs, and identifies those rows
among partitions B,-B,, for which the actual values of the
specified attribute also occur in at least one of the partitions
A,-A, . Similarly, when the recipient data server has received
all of the globalized lists 108 from partitions A,-A,,, a com-
piled A list 114 can be created. The compiled A list 114
comprises pairs of Doc IDs and global IDs, and identifies
those rows among partitions A, -A,, for which the actual val-
ues of the specified attribute also occur in at least one of the
partitions B,-B,,,.

In a step 314, a join operation is performed between the
compiled A list 114 and the compiled B list 112, where the
join condition is based on the global ID attribute that is
common to the compiled A list and the compiled B list. Since
the global IDs are associated with actual values of the speci-
fied attribute, the join operation performed in this step is
equivalent to the desired join operation between the specified
attributes.

Following will be a more detailed discussion of the fore-
going processing steps shown in FIG. 3, explained in connec-
tion with a particular example to facilitate further understand-
ing of aspects of the present invention. Consider first the case
of a join operation for non-partitioned data tables.

FIG. 4 shows two data tables, data table A 402 and data
table B 404. Data table A specifies X attributes, where the first
attribute is a Doc ID attribute and the second attribute is a
Name attribute. Similarly, data table B specifies Y attributes
also including a Doc ID attribute and a Name attribute. The
Doc ID attribute identifies each row in a respective data table
and so its actual values can be arbitrarily assigned so long as
they serve to uniquely identify each row in that data table.
Each data table A, B may have one or more dictionaries
defined on their attributes in order to reduce data storage
requirements.

Suppose a join operation is performed on the data tables A
and B, predicated on the Name attribute in data table A being
equal to the Name attribute in data table B. An execution plan
for the join operation may involve generating an index on the
Name attribute for each data table A and B. For example, F1G.
4 A shows Index A 414 and Index B 412, represented as tables
comprising the Doc ID attribute and the Name attribute. The
figure shows a result 422 of the join operation, whichis a table
comprising a Doc ID A attribute and a Doc ID B attribute. The

10

15

20

25

30

35

40

45

50

55

60

65

8

Doc IDs identify respective rows in data tables A and B that
have the same actual values in their Name attribute.

Referring to FIGS. 5 and 5A, consider an example of the
split configurations of the data tables A and B shown in FIG.
4. FIG. 5 shows data table A having been partitioned into
partitions A,, A, (502a, 5025) and data table B being parti-
tioned into partitions B, B, (5044, 5045). FIG. 5A shows
dictionaries 512a, 512, b, 514a, 5145 for the Name attribute
in each respective partition A |, A,, B,, and B,, one dictionary
being defined for each partition. Each occurrence of an actual
value of the Name attribute in a partition has an entry in its
respective dictionary and is associated with a value ID. Note
that the value IDs among the dictionaries are not related. For
example, value ID 2 in dictionary A, is associated with the
actual value “Hugo”, while the same value ID in dictionary A,
is associated with the actual value “Herbert”. FIG. 5 shows
the value IDs associated with the actual values of the Name
attribute for each partition A, A,, B,, and B,, obtained from
the dictionaries of FIG. 5A. Though the value IDs in a given
dictionary can be arbitrarily selected (so long as they uniquely
identify an actual value and the actual value is uniquely iden-
tified by the value ID), embodiments of the present invention
may adopt the convention that the value IDs be the ordinal
positions in the dictionary of their corresponding actual val-
ues. Accordingly, the value IDs are consecutive, beginning
with “1”.

Consider now the join operation discussed above in con-
nection with FIG. 4, namely a join operation of the split data
tables A and B of FIG. 5 predicated on the Name attribute in
data table A being equal to the Name attribute in data table B
(the join condition). The execution plan shown in FIG. 3 for
conducting a join operation in accordance with the present
invention will now be explained in the context of the specific
example illustrated in FIGS. 5 and 5A. For the discussion that
follows, references to “actual value” will be understood to
refer to actual values of the Name attribute (the specified
attribute) in data table A or in data table B.

Step 302—Generate and Send Reduction Data

Referring to FIG. 6, each partition A, A, generates and
sends respective reduction data 1024, 1025 to partitions B,
B,. The reduction data 102a, 1025 can be obtained from the
local dictionary of the respective partition. For example, the
reduction data 102a from partition A, is communicated to
each partition B, B,. Likewise, the reduction data 1024 from
partition A, is communicated to each partition B;, B,. In a
particular embodiment, an index table 602 can be created in
eachpartition A, A,. Eachindex table 602 comprises the Doc
1D attribute and the Name attribute obtained from the respec-
tive partition, and a value ID attribute obtained from the
partition’s local dictionary. A tuple list 604 comprising Doc
IDs and initially populated with corresponding value IDs can
be generated and stored in the respective partition. The sig-
nificance of table 602 and list 604 will become clear later on.

Step 304—Associate Global IDs

Each partition B,, B, associates a global ID for each actual
value of the Name attribute in the partition that also occurs in
at least one of the partitions A, A,. Referring to FIGS. 3A, 7,
and 7A-7D, consider first the processing in partition B,. Pro-
cessing in partition B, will be discussed in connection with
FIGS. 8 and 8A-8D.

In a step 322, various tables can be created and initialized
in partition B,. In an embodiment, these tables are local to
partition B,. FIG. 7 shows the reduction data 102a, 1025
received in partition B, from partitions A, A,. In embodi-
ments, the reduction data 102a, 1026 may be incorporated
into a translation matrix 702 local to partition B,. The value
IDs in the reduction data 1024, 1025 may be assembled into

US 9,135,282 B2

9

a VID-A column 712. A VID-B column 714 is initialized to
“~17; this column will be filled in with value IDs from the
local dictionary of partition B, .

The translation matrix 702 includes a global ID column
716 which is initialized with its corresponding ordinal posi-
tion in the translation matrix. In general, any set of numbers
can be used to initialize the global ID column 716 so long as
each row has a unique number and the same set of numbers is
used by each of the partitions B,, B,. Initially, the value IDs
1,2, 3, and 4 from partition A, are initially mapped to global
1Ds 1, 2, 3, and 4 (namely rows 1-4 of the translation matrix
702); and the value IDs 1, 2, 3, 4, and 5 from partition A, are
initially mapped to global IDs 5, 6,7, 8, and 9 (rows 5-9 ofthe
translation matrix).

Additional tables are created and initialized. An A2B trans-
lation table is created for each partition A, and initialized to
“~1”. For example, partition A, has a corresponding A2B
translation table 7044 and partition A, has a corresponding
A2B translation table 7045. The translation tables 704a, 7045
serve to translate the value IDs from partitions A, and A, to
corresponding value IDs in partition B,. Since the respective
value IDs for A, A, are consecutive by convention, the value
IDs correspond directly with the row indices in tables 704a,
704b. For example, the value ID “3” for partition A, can be
used to index into translation table 7044 to obtain the trans-
lated value ID in partition B,. This use of the indices is
illustrated in FIG. 7.

A B2A translation table is created and initialized with
“~2”. The partition B, has a corresponding B2A translation
table 706 which includes a corresponding column for each
partition A. The B2A translation table 706 serves to provide a
translation of the value IDs in the local dictionary of partition
B, to corresponding value IDs in partitions A |, A,. Since the
value IDs are consecutive, the row in table 706 for a given
value ID can be accessed using the value ID itself as an index
into the table.

Continuing with FIG. 3A and referring now to FIGS.
TA-7C, the translation tables 704a, 7045, 706 can be filled in
the following manner: Consider first FIG. 7A and partition
A,. In a step 324a, the value IDs from the corresponding
reduction data 102a are sent to and received by the server that
hosts partition A,. For example, FIG. 7A shows the list of
value IDs {1, 2, 3, 4} being sent to the server. The actual
values corresponding to the list of value IDs are obtained from
the local dictionary of partition A, (see FIG. 5A) and are sent
by and received from the server in a step 3245. For example,
the list of actual values received is {Adam, Hugo, Markus,
Werner}. In a step 324c, if an actual value received from
partition A| matches an entry in the local dictionary for par-
tition B, then the value ID from B,’s local dictionary is
copied to the corresponding entry in the A2B translation table
704a. As explained above, the A, value IDs can be used to
index into the table 704a. Conversely, in a step 3244, partition
A, ’svalue ID for that matching actual value is copied into the
B2A translation table 706 indexed by the value ID from B,’s
local dictionary. FIG. 7A is annotated with steps 324a-324d
to illustrate this process.

Steps 324a-324d are performed 324 by each partition A.
For example, FIG. 7B shows steps 324a-324d performed for
partition A,. Since each partition A operates independently
of each other, they can perform these steps at the same time.
FIG. 7C shows the result after each of the partitions have
completed steps 324a-324d.

It can be appreciated from the foregoing that the “-1”
values in the A2B translation tables 7044, 7045 indicate that
there is no translation of value IDs from the respective A |, A,
partitions to the B, partition. Consider translation table 704a

10

15

20

25

30

35

40

45

50

55

60

65

10

forpartition A |, for example. The second entry corresponds to
avalue ID 2 in partition A, which in turn corresponds to the
value “Hugo”. Since the local dictionary for partition B, does
not have an entry for “Hugo”, the entry in table 704a remains
unchanged, namely it is “~1".

Itcan be further appreciated that the “~2” values inthe B2A
translation table 706 indicates that the partition B, has not yet
received the corresponding value from the respective the A,
partition. For example, consider the first entry in the A, ID
column of the table 706. This entry corresponds to the first
entry in the local dictionary for partition B,, which contains
the value “Achim” Since the local dictionary for partition A,
(see FIG. 5A) does not include the value “Achim”, partition
B, did not receive such value from partition A, and so the
entry in table 706 remains unchanged, namely it is “-2”.
Previously communicated values can be locally cached in the
B2 A translation table 706 for subsequent join operations, thus
avoiding redundant communications. Thus, for subsequent
join operations involving data table A, only those entries that
have “-2” may need to be filled with actual values.

Continuing with FIGS. 3A and 7D, in a step 326 the A2B
translation tables 704a, 7045 are mapped into their respective
entries in the VID-B column 714 of the translation matrix
702. FIG. 7D shows the result of such mapping, the values are
copied from the translation tables 704a, 7045 into column
714. In this way, the global IDs in column 716 become asso-
ciated with actual values via the value IDs in columns 712 and
714. For example, the value ID of 1 from partition A, is
associated with “Adam” and so the global ID “1” is associated
with “Adam.” Similarly, global ID “5” is associated with
“Eva.”

For entries in the tables 704a, 7045 which have no trans-
lation to corresponding value IDs in partition B, the corre-
sponding global IDs in column 716 are changed to “-1” to
indicate this fact. Thus, for example, value IDs 2, 3, and 4 in
partition A, have no corresponding value IDs in partition B,,
and so the global IDs in rows 2, 3, and 4 of the translation
matrix 702 are set to “~1”. Similarly, value IDs 2, 3, and 4 in
partition A, have no corresponding value IDs in partition B,,
and so the global IDs in rows 6, 7, and 8 of the translation
matrix 702 are set to “~1".

In a step 328, any duplicate VID-B values in column 714
would be handled in the following manner: For each VID-B
value in column 714 that occurs more than once, copy the
global ID (column 716) associated with the first occurrence of
that VID-B value into the global ID column of each dupli-
cated VID-B value. However, the translation matrix 702
shown in FIG. 7D for partition B, does not have any dupli-
cated VID-B values. For example, the values 2, 3, and 4 each
occurs only once in column 714, and so their corresponding
global IDs remain unchanged, namely 1, 5, 9 respectively.
This is not the case in partition B,, and the processing of step
328 is illustrated below for partition B,.

Refer now to FIGS. 3A, 8, and 8 A-8D for a brief discussion
of'the processing (step 304) of partition B, in accordance with
embodiments of the present invention. Thus, in a step 322,
various tables local to partition B, can be created and initial-
ized in the partition. FIG. 8 shows the reduction data 102a,
1025 received in partition B, from partitions A, A,. In
embodiments, the reduction data 102a, 1026 may be incor-
porated into a translation matrix 702 that is local to partition
B,. The VID-A column 712, VID-B column 714, and global
ID column 716 are initialized in the same manner as
explained in FIG. 7 for partition B, . Likewise, the additional
tables 704a, 7045, and 706 are initialized in the same manner
as described in FIG. 7 for partition B,. The B2A translation
table 706 for partition B, in FIG. 7 contains four entries

US 9,135,282 B2

11

because B, ’s local dictionary has four items. However, since
B,’s local dictionary has five items, the B2A translation table
706 in FIG. 8 has five entries.

Referring now to FIG. 8A, processing of steps 324a-324d
between partition B, and A | isillustrated. The list of value IDs
for partition A, is sent to the server hosting the A, partition
(324a). The list of values corresponding to the value IDs is
received from the server (3245). In step 324c, the received list
of values { Adam, Hugo, Markus, Werner} is used to map the
A, value IDs to the B, value IDs, thus filling in the A2B
translation table 704a for A | . In step 3244, a similar mapping
is made to map the B, value IDs to the A, value IDs, thus
filling in the A, ID column in the translation table 706 for
partition B,.

Referring to FIG. 8B, the processing of steps 324a-324d
between partition B, and A, is illustrated. FIG. 8C show
shows the result upon completion of loop 324. In step 326, the
A2B translation tables 704a, 7045 are mapped into their
respective entries in the VID-B column 714 of the translation
matrix 702. FIG. 8D shows the result of such mapping, the
values are copied from the translation tables 704a, 7045 into
column 714.

In step 328, duplicate VID-B values in column 714 of the
translation matrix 702 for partition B, are handled in the
following manner: For each VID-B value in column 714 that
occurs more than once, copy the global ID (column 716)
associated with the first occurrence of that VID-B value into
the global ID column of each duplicated VID-B value. Refer-
ring to FIG. 8E, The VID-B value of “3” appears twice. The
first occurrence is associated with the global ID “2”. Accord-
ingly, the global ID value “2” is copied into the global ID
column of each duplicate occurrence of “3” in the VID-B
column 714.

This concludes the discussion of step 304 (FIG. 3) for
partitions B, and B,. FIG. 9 shows the translation matrices
702 that are stored in each partition B, B, at this point. A few
observations are worth mentioning. Processing in accordance
with embodiments of the present invention in partitions B,
B, occurs independently of each other; there is no synchro-
nization of their data or other communications. The resulting
translation matrix 702 in a given partition contains global IDs
that identify actual values (ofthe specified attribute in the join
operation) in the given partition which also occur in at least
one of the partitions A, A,. Consider for example the value
“Hugo” in FIG. 9. “Hugo” appears in partition B, and in
partition A |, so “Hugo” is assigned a global ID (in this case 3).
On the other hand “Achim” in partition B, does not appear in
either partition A; or A,. Accordingly, none of the translation
tables 702 have a translation for “Achim” The global IDs are
unique among the translation tables 702 for a given actual
value. For example, “Hugo” appears in partitions B, and B,.
The translation matrices 702 in each partition B,, B, map
“Hugo” to the same global 1D, namely “2”.

The discussion will now continue with an explanation of
the remaining steps 306-312 of FIG. 3.

Step 306—Send Translated Value IDs

Each partition B, B, translates the value IDs that comprise
the reduction data 102a, 1025 from respective partitions A,
A,, producing a set of translated value IDs. Referring to FIG.
10A, the processing of this step in partition B, is shown. Inan
embodiment, the translation matrix 702 for partition B, can
provide the contents of a translated value ID table 104a for
partition A, and a translated value ID table 1045 for partition
A,. As can be seen, the translated value ID table 104a com-
prises rows 1-4 from columns 712 and 716 of the translation
matrix 702. Likewise, the translated value ID table 1045
comprises rows 5-9 from columns 712 and 716 of the trans-

10

15

20

25

30

35

40

45

50

55

60

65

12

lation matrix 702. The tables 104a, 1045 provide a translation
of value IDs from partitions A,, A, to the global IDs. In
accordance with step 306, the tables 104a, 1045 are commu-
nicated to and received by respective partitions A, A,. The
same process occurs in partition B,, and is illustrated in FIG.
10B. Accordingly, partition A, will receive a translation value
1D table 104a from partition B, and from partition B,. Simi-
larly, partition A, will receive a translation value ID table
1045 from partition B, and from partition B,,.

Step 308—Generate Global B Lists

Each partition B,, B, generates a globalized list that iden-
tifies one or more rows stored in the partition. Each row that
is identified in the globalized list contains an actual value of
the specified attribute which also occurs in one of the parti-
tions A, A,. Referring to FIG. 11A, processing of this step in
partition B, is shown. In an embodiment, an index table 1102
can be created for partition B,, comprising the Doc ID
attribute and the Name attribute obtained from the partition,
and a value ID attribute obtained from B, ’s local dictionary.

In an embodiment, for each row in the index table 1102: (1)
if the value ID appears in column 714 of the translation matrix
702, then (2) copy the corresponding global ID from column
716 into a globalized list 1064 for partition B,, and (3) copy
the corresponding Doc ID from the index table for all
instances of the value ID. For example, value ID 2 appears in
column 714 of the translation matrix 702. Two instances of
the value ID 2 appear in the index table 1102, and the corre-
sponding Doc IDs are 2 and 4. Accordingly, 2 and 4 are
recorded in the globalized list 106a. The global ID corre-
sponding to value ID 2 is 1, and so 1 is recorded in the
globalized list 1064 next to Doc IDs 2 and 4. This is repeated
for value IDs 3 and 4, which also appear in column 714 ofthe
translation matrix 702. The completed globalized list 106a
can then be communicated to a recipient server.

Referring to FIG. 11B, the foregoing is repeated for parti-
tion B,: An index table 1102 is created from partition B,. A
globalized list 1065 is then generated based on the index table
and on the translation matrix 702 developed in partition B,.
The globalized list 1065 is then communicated to the recipi-
ent server.

Step 310—Generate Global A Lists

Referring now to FIGS. 12A and 12B, each partition A |, A,
can generate a globalized list using the tupelist list and the
translated value 1D tables 1044 received from the partitions
B,, B,. Consider FIG. 12A for a discussion of processing in
partition A, . It is noted that in accordance with the present
invention, the value IDs in each translated value ID table 104a
received from the partitions B,, B, will map to the same
global ID or to “4”, meaning that no translation was made in
the respective B partition. For example, value ID 1 maps to
global ID 1 in the table 104a received from partition B,. Value
1D 1 also maps to global ID 1 in the table 1044 received from
partition B, However, value IDs 2, 3, and 4 in the table 104a
received from partition B, were not translated, so these value
IDs map to “~1”. On the other hand, value IDs 2 and 3 in the
table 1044 received from partition B, were (coincidentally)
translated to global IDs 2 and 3, respectively. It is noted that
the mapped pairs having global ID “~1” can be regarded as
having non-matching values in the join operation (e.g. parti-
tion A, value ID 4/Doc ID 4). Those rows would be eliminated
in the case of an inner join.

In an embodiment, using the tuple list 604 obtained (FIG.
6) for partition A |, then for each value ID in the tuple list: (1)
if the value ID appears in one of the translated value ID tables
104a, then (2) copy the corresponding global ID from that
table into a globalized list 1084 for partition A, and (3) copy
the corresponding Doc ID from the tuple list for all instances

US 9,135,282 B2

13

of the value ID. The globalized list 1084 is then communi-
cated to the recipient server. This procedure is repeated in
partition A,, with reference to FIG. 12B using the tuple list
604 generated for partition A, and the translated value 1D
tables 1045 received from partitions B, and B, to generate a
globalized list 1085. The resulting globalized list 1085 is then
communicated to the recipient server.

Step 312—Compile Combined Lists

The recipient server will receive the globalized lists 106a,
1064 from respective partitions B, B,. A compiled B list 112
can be created by concatenating the two globalized lists 106a,
1064. This is illustrated in FIG. 13. The compiled B list 112
comprises pairs of Doc IDs and global IDs. The Doc ID
identifies those rows among partitions B, and B, for which
the actual values of the specified attribute (now identified by
the global IDs) also occur in at least one of the partitions A |,
A,. The figure also shows a compiled A list 114 for the A
partitions, created by concatenating globalized lists 108a,
1085. The compiled A list 114 comprises pairs of Doc IDs and
global IDs. The Doc ID identifies those rows among partitions
A, and A, for which the actual values of the specified attribute
(now identified by the global IDs) also occur in at least one of
the partitions B, B,.

Step 314—Join the Compiled Lists

Still referring to FIG. 13, a join operation is performed
between the compiled A list 114 and the compiled B list 112,
where the join condition is based on the global ID attribute. In
other words, the join operation is predicated on the global ID
in the compiled A list 114 being equal to the global ID in
compiled B list 112. The join result 122 is shown in the figure.

A comparison of the join result 122 in FIG. 13 with the join
result shown in FIG. 4A will reveal that the two results are
identical. The result obtained in FIG. 4A was obtained by
joining data tables A and B, which were not split. By com-
parison, the join result 122 in FIG. 13 was made on parti-
tioned data tables A and B, while at the same time allowing for
each database partition A, A,, B, B, to employ a local
dictionary on the specified attribute.

The above description illustrates various embodiments of
the present invention along with examples of how aspects of
the present invention may be implemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to illustrate the flexibil-
ity and advantages of the present invention as defined by the
following claims. Based on the above disclosure and the
following claims, other arrangements, embodiments, imple-
mentations and equivalents will be evident to those skilled in
the art and may be employed without departing from the spirit
and scope of the invention as defined by the claims.

What is claimed is:

1. A method for a join operation between a first data table
and a second data table based on a first attribute of the first
data table and a second attribute of the second data table, the
method comprising:

a computer processor in a first computer system generating
reduction data for a first data partition, the first computer
system being one among a plurality of first computer
systems, the first data partition being one among a plu-
rality of first data partitions that constitute the first data
table and are distributed among the plurality of first
computer systems, the reduction data comprising value
1Ds representative of actual values of the first attribute in
the first data partition;

the computer processor sending the reduction data to a
plurality of second computer systems which store a plu-
rality of second data partitions that constitute the second
data table;

10

15

20

25

30

35

40

45

50

55

60

14

the computer processor receiving a plurality of mappings
from the plurality of second computer systems, each
second computer system having value IDs from reduc-
tion data received from the plurality of first computer
systems, each value ID being associated with a corre-
sponding global ID that is common among the plurality
of second computer systems, wherein a mapping in a
given second computer system comprises a plurality of
data pairs of a value ID and an associated global 1D,
wherein value IDs in the mapping are representative of
actual values of the second attribute in the second data
partition of the given second computer system; and
the computer processor generating a first globalized list
comprising data pairs of a document ID from the first
data partition paired with a global ID from one of the
mappings received, wherein the value ID that is paired
with the global ID represents an actual value of a first
attribute of a data record in the first data partition iden-
tified by the document ID,

wherein a plurality of first globalized lists from one or more
of the first computer systems are combined into a first
compiled list,
wherein a plurality of second globalized lists from one or
more of the second computer systems are combined into
a second compiled list,

wherein the first and second compiled lists are joined based
on global IDs in the first compiled list and the global IDs
in the second compiled list.

2. The method of claim 1 wherein the value IDs in the
reduction data for the first data partition are entries in a local
dictionary stored in the first computer system.

3. The method of claim 1 further comprising the computer
processor sending the globalized list to a recipient server,
wherein the recipient server uses globalized lists received
from the plurality of first computer systems to generate the
first compiled list.

4. The method of claim 3 wherein the recipient server uses
globalized lists received from the plurality of second com-
puter systems to generate the second compiled list.

5. The method of claim 4 wherein the recipient server
combines the first and second compiled lists based on the
global IDs in the first compiled list and the global IDs in the
second compiled list.

6. The method of claim 1 wherein each of the second
globalized lists is generated using reduction data from each of
the first data partitions.

7. A non-transitory computer readable storage medium
having stored thereon computer executable program code,
which when executed, will cause a computer processor in a
first computer system to perform steps for a join operation
between a first data table and a second data table based on a
first attribute of the first data table and a second attribute of the
second data table, the steps including:

generating reduction data for a first data partition, the first

computer system being one among a plurality of first
computer systems, the first data partition being one
among a plurality of first data partitions that constitute
the first data table and are distributed among the plurality
of first computer systems, the reduction data comprising
value IDs representative of actual values of the first
attribute in the first data partition;

sending the reduction data to a plurality of second com-

puter systems which store a plurality of second data
partitions that constitute the second data table;
receiving a plurality of mappings from the plurality of
second computer systems, each second computer sys-
tem having value IDs from reduction data received from

US 9,135,282 B2

15

the plurality of first computer systems, each value 1D
being associated with a corresponding global ID that is
common among the plurality of second computer sys-
tems, wherein a mapping in a given second computer
system comprises a plurality of data pairs of a value ID
and an associated global ID, wherein value IDs in the
mapping are representative of actual values of the sec-
ond attribute in the second data partition of the given
second computer system; and
generating a first globalized list comprising data pairs of a
document ID from the first data partition paired with a
global ID from one of the mappings received, wherein
the value ID that is paired with the global ID represents
an actual value of a first attribute of a data record in the
first data partition identified by the document 1D,

wherein a plurality of first globalized lists from one or more
of the first computer systems are combined into a first
compiled list,
wherein a plurality of second globalized lists from one or
more of the second computer systems are combined into
a second compiled list,

wherein the first and second compiled lists are joined based
on global IDs in the first compiled list and the global IDs
in the second compiled list.

8. The non-transitory computer readable storage medium
of claim 7 wherein the value IDs in the reduction data for the
first data partition are entries in a local dictionary stored in the
first computer system.

9. The non-transitory computer readable storage medium
of claim 7 wherein the computer executable program code,
which when executed, will further cause the computer pro-
cessor to send the globalized list to a recipient server, wherein
the recipient server uses globalized lists received from the
plurality of first computer systems to generate the first com-
piled list.

10. The non-transitory computer readable storage medium
of claim 9 wherein the recipient server uses globalized lists
received from the plurality of second computer systems to
generate the second compiled list.

11. The non-transitory computer readable storage medium
of'claim 10 wherein the recipient server combines the first and
second compiled lists based on the global IDs in the first
compiled list and the global IDs in the second compiled list.

12. The non-transitory computer readable storage medium
of claim 7 wherein each of the second globalized lists is
generated using reduction data from each of the first data
partitions.

13. A first computer system comprising:

a computer processor;

a memory; and

executable program code stored in the memory to perform

a join operation between a first data table and a second
data table based on a first attribute of the first data table
and a second attribute of the second data table, wherein
the first data table is split into a plurality of first data
partitions and the second data table is split into a plural-
ity of second data partitions,

the memory storing one of the first data partitions,

the executable program code, which when executed by the

computer processor, will cause the computer processor
to:

10

15

20

25

30

40

45

50

55

60

16

generate reduction data for a first data partition, the first
computer system being one among a plurality of first
computer systems, the plurality of first data partitions
being distributed among the plurality of first com-
puter systems, the reduction data comprising value
1Ds representative of actual values of the first attribute
in the first data partition;

send the reduction data to a plurality of second computer
systems which store the plurality of second data par-
titions that constitute the second data table;

receive a plurality of mappings from the plurality of
second computer systems, each second computer sys-
tem having value IDs from reduction data received
from the plurality of first computer systems, each
value ID being associated with a corresponding glo-
bal ID that is common among the plurality of second
computer systems, wherein a mapping in a given sec-
ond computer system comprises a plurality of data
pairs of a value ID and an associated global 1D,
wherein value IDs in the mapping are representative
of actual values of the second attribute in the second
data partition of the given second computer system;
and

generate a first globalized list comprising data pairs of a
document ID from the first data partition paired with
a global ID from one of the mappings received,
wherein the value ID that is paired with the global ID
represents an actual value of a first attribute of a data
record in the first data partition identified by the docu-
ment ID,

wherein a plurality of first globalized lists from one or more
of the first computer systems are combined into a first
compiled list,
wherein a plurality of second globalized lists from one or
more of the second computer systems are combined into
a second compiled list,

wherein the first and second compiled lists are joined based
on global IDs in the first compiled list and the global IDs
in the second compiled list.

14. The system of claim 13 wherein the value IDs in the
reduction data for the first data partition are entries in a local
dictionary stored in the first computer system.

15. The system of claim 13 wherein the computer execut-
able program code, which when executed, will further cause
the computer processor to send the globalized list to a recipi-
ent server, wherein the recipient server uses globalized lists
received from the plurality of first computer systems to gen-
erate the first compiled list.

16. The system of claim 15 wherein the recipient server
uses globalized lists received from the plurality of second
computer systems to generate the second compiled list.

17.The non system of claim 16 wherein the recipient server
combines the first and second compiled lists based on the
global IDs in the first compiled list and the global IDs in the
second compiled list.

18. The system of claim 13 wherein each of the second
globalized lists is generated using reduction data from each of
the first data partitions.

#* #* #* #* #*

